Cystic fibrosis – a multiorgan protein misfolding disease

نویسندگان

  • Douglas Fraser-Pitt
  • Deborah O’Neil
چکیده

Cystic fibrosis (CF) is a heterogeneous multiorgan disease caused by mutations in the CFTR gene leading to misfolding (and other defects) and consequent dysfunction of CFTR protein. The majority of mutations cause a severe CF phenotype, and people with this condition will require a wide variety of medical interventions and therapies throughout their lives to address the symptoms of their condition. CF affects many different organ systems, but the most serious consequence of the disease is degeneration of lung function due to chronic respiratory infection and colonization of the airways with opportunistic microbial pathogens. Improvements in therapeutics, particularly the effective use of antibiotics, have led to significant gradual increases in life expectancy. There remains, however, a continuing need for newer, safer and more effective antimicrobials and mucolytic agents to maintain and improve our ability to combat CF lung infections before other curative approaches which target the root cause of the disease become available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein-misfolding diseases and chaperone-based therapeutic approaches.

A large number of neurodegenerative diseases in humans result from protein misfolding and aggregation. Protein misfolding is believed to be the primary cause of Alzheimer's disease, Parkinson's disease, Huntington's disease, Creutzfeldt-Jakob disease, cystic fibrosis, Gaucher's disease and many other degenerative and neurodegenerative disorders. Cellular molecular chaperones, which are ubiquito...

متن کامل

Molecular screening of R117H mutation in non caucasian cystic fibrosis patients in the north of Iran

Cystic fibrosis is an autosomal recessive disease caused by a wide spectrum of mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator protein. These mutations that correlate with different phenotypes, vary in their frequency and distribution in different populations. In this study missense mutation R117H that associated with the different clinical symptoms wa...

متن کامل

Decoding F508del Misfolding in Cystic Fibrosis

The functional deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR), a plasma membrane chloride channel, leads to the development of cystic fibrosis. The deletion of a phenylalanine at residue 508 (F508del) is the most common cause of CFTR misfolding leading to the disease. The F508del misfolding originates in the first nucleotide-binding domain (NBD1), which induces a g...

متن کامل

Amyloids go genomic: insights regarding the sequence determinants of prion formation from genome-wide studies.

Protein misfolding is the primary cause of several systemic and neurodegenerative diseases and a major challenge in the development of protein-based therapeutics, Figure 1 top. In misfolding diseases such as cystic fibrosis and a1-antitrypsin deficiency, degradation and/or mistrafficking of specific proteins causes loss of protein function. A second class of misfolding disease includes systemic...

متن کامل

The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels

Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015